157 research outputs found

    Fast and Accurate OOV Decoder on High-Level Features

    Full text link
    This work proposes a novel approach to out-of-vocabulary (OOV) keyword search (KWS) task. The proposed approach is based on using high-level features from an automatic speech recognition (ASR) system, so called phoneme posterior based (PPB) features, for decoding. These features are obtained by calculating time-dependent phoneme posterior probabilities from word lattices, followed by their smoothing. For the PPB features we developed a special novel very fast, simple and efficient OOV decoder. Experimental results are presented on the Georgian language from the IARPA Babel Program, which was the test language in the OpenKWS 2016 evaluation campaign. The results show that in terms of maximum term weighted value (MTWV) metric and computational speed, for single ASR systems, the proposed approach significantly outperforms the state-of-the-art approach based on using in-vocabulary proxies for OOV keywords in the indexed database. The comparison of the two OOV KWS approaches on the fusion results of the nine different ASR systems demonstrates that the proposed OOV decoder outperforms the proxy-based approach in terms of MTWV metric given the comparable processing speed. Other important advantages of the OOV decoder include extremely low memory consumption and simplicity of its implementation and parameter optimization.Comment: Interspeech 2017, August 2017, Stockholm, Sweden. 201

    Critical ingredients of supernova Ia radiative-transfer modeling

    Full text link
    We explore the physics of SN Ia light curves and spectra using the 1-D non-LTE time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one "standard" 1-D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties on radiative-transfer modeling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an "opacity problem", characterized by the treatment of a large number of lines. It is also key to treat important atomic processes consistently. Besides handling line blanketing in non-LTE, we show that including forbidden line transitions of metals is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the color evolution and the Delta-M15 of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g., associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a challenge. We nonetheless obtain a good match to the golden standard type Ia SN 2005cf in the optical and near-IR, from 5 to 60d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modeling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating non-LTE processes [abridged].Comment: Accepted to MNRA

    Constraints on the explosion mechanism and progenitors of type Ia supernovae

    Full text link
    Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant color. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in color to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow SiII6355A line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colors and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive decay heating. Furthermore, PDDEL models show short-lived CII lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multi-dimensional effects, varying configurations for such ``pulsations" offer a source of spectral diversity amongst SNe Ia. PDDEL and DDC models also provide one explanation for low- and high-velocity gradient SNe Ia.Comment: Accepted to MNRA

    [CoIII] versus NaID in type Ia supernova spectra

    Full text link
    The high metal content and fast expansion of supernova (SN) Ia ejecta lead to considerable line overlap in their optical spectra. Uncertainties in composition and ionization further complicate the process of line identification. In this paper, we focus on the 5900A emission feature seen in SN Ia spectra after bolometric maximum, a line which in the last two decades has been associated with [CoIII]5888A or NaID. Using non-LTE time-dependent radiative-transfer calculations based on Chandrasekhar-mass delayed-detonation models, we find that NaID line emission is extremely weak at all post-maximum epochs. Instead, we predict the presence of [CoIII]5888A after maximum in all our SN Ia models, which cover a range from 0.12 to 0.87Msun of 56Ni. We also find that the [CoIII]5888A forbidden line is present within days of bolometric maximum, and strengthens steadily for weeks thereafter. Both predictions are confirmed by observations. Rather than trivial taxonomy, these findings confirm that it is necessary to include forbidden-line transitions in radiative-transfer simulations of SNe Ia, both to obtain the correct ejecta cooling rate and to match observed optical spectra.Comment: Accepted to MNRA

    Evidence for sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the width-luminosity relation

    Full text link
    The faster light-curve evolution of low-luminosity Type Ia supernovae (SNe Ia) suggests that they could result from the explosion of white dwarf (WD) progenitors below the Chandrasekhar mass (MChM_{\rm Ch}). Here we present 1D non-LTE time-dependent radiative transfer simulations of pure central detonations of carbon-oxygen WDs with a mass (M_\rm{tot}) between 0.88 M_{\odot} and 1.15 M_{\odot}, and a 56Ni^{56}\rm{Ni} yield between 0.08 M_{\odot} and 0.84 M_{\odot}. Their lower ejecta density compared to MChM_{\rm Ch} models results in a more rapid increase of the luminosity at early times and an enhanced γ\gamma-ray escape fraction past maximum light. Consequently, their bolometric light curves display shorter rise times and larger post-maximum decline rates. Moreover, the higher M(^{56}\rm{Ni})/M_\rm{tot} ratio at a given 56Ni^{56}\rm{Ni} mass enhances the temperature and ionization level in the spectrum-formation region for the less luminous models, giving rise to bluer colours at maximum light and a faster post-maximum evolution of the BVB-V colour. For sub-MChM_{\rm Ch} models fainter than MB18.5M_B\approx -18.5 mag at peak, the greater bolometric decline and faster colour evolution lead to a larger BB-band post-maximum decline rate, ΔM15(B)\Delta M_{15}(B). In particular, all of our previously-published MChM_{\rm Ch} models (standard and pulsational delayed detonations) are confined to ΔM15(B)<1.4\Delta M_{15}(B) < 1.4 mag, while the sub-MChM_{\rm Ch} models with M_\rm{tot}\lesssim 1 M_{\odot} extend beyond this limit to ΔM15(B)1.65\Delta M_{15}(B)\approx 1.65 mag for a peak MB17M_B\approx -17 mag, in better agreement with the observed width-luminosity relation (WLR). Regardless of the precise ignition mechanism, these simulations suggest that fast-declining SNe Ia at the faint end of the WLR could result from the explosion of WDs whose mass is significantly below the Chandrasekhar limit.Comment: 10 pages, 6 figures. Accepted for publication in MNRA

    On the Evolution of Thermonuclear Flames on Large Scales

    Get PDF
    The thermonuclear explosion of a massive white dwarf in a Type Ia supernova explosion is characterized by vastly disparate spatial and temporal scales. The extreme dynamic range inherent to the problem prevents the use of direct numerical simulation and forces modelers to resort to subgrid models to describe physical processes taking place on unresolved scales. We consider the evolution of a model thermonuclear flame in a constant gravitational field on a periodic domain. The gravitational acceleration is aligned with the overall direction of the flame propagation, making the flame surface subject to the Rayleigh-Taylor instability. The flame evolution is followed through an extended initial transient phase well into the steady-state regime. The properties of the evolution of flame surface are examined. We confirm the form of the governing equation of the evolution suggested by Khokhlov (1995). The mechanism of vorticity production and the interaction between vortices and the flame surface are discussed. The results of our investigation provide the bases for revising and extending previous subgrid-scale model.Comment: 15 pages, 22 postscript figures. Accepted for publication by the Astrophysical Journal. High resolution figures can be found at http://flash.uchicago.edu/~zhang/research_paper.htm

    Laser Pulse Heating of Spherical Metal Particles

    Get PDF
    We consider a general problem of laser pulse heating of spherical metal particles with the sizes ranging from nanometers to millimeters. We employ the exact Mie solutions of the diffraction problem and solve heat-transfer equations to determine the maximum temperature at the particle surface as a function of optical and thermometric parameters of the problem. The main attention is paid to the case when the thermometric conductivity of the particle is much larger than that of the environment, as it is in the case of metal particles in fluids. We show that in this case at any given finite duration of the laser pulse the maximum temperature rise as a function of the particle size reaches an absolute maximum at a certain finite size of the particle, and we suggest simple approximate analytical expressions for this dependence which covers the entire range of variations of the problem parameters and agree well with direct numerical simulations.Comment: 7 pages, 6 figure
    corecore